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Abstract. Nuclear spin relaxation rates due to magnetic interactions between diffusing spins in
ordered systems are often interpreted in terms of an exponential correlation function (the BPP
model). The common extension of this to disordered systems is to average the relaxation rate
for a jump rate with energy E over a distribution N(E) of energies in the disordered system. A
more rigorous extension of the BPP model to disordered systems is described which incorporates
simultaneous barrier- and site-energy distributions. An efficient computational scheme is developed
to evaluate the triple integrals required. Results are presented for the correlation functions and
relaxation rates for some typical values of parameters for both of the above extensions of the BPP
model to disordered systems. There are significant differences between the results for the two
models. The model presented here provides a means of analysing experimental relaxation data to
deduce information about both barrier- and site-energy distributions.

1. Introduction

The nuclear spin relaxation rates due to magnetic dipolar interactions between spins undergoing
relative diffusion depend on linear combinations of spectral density functions (see, for example,
Sholl 1993). A theory of the spectral density functions is therefore necessary to relate observed
relaxation rates to the microscopic details of the diffusion. The simplest approach for diffusion
in ordered systems is the BPP model (Bloembergen et al 1948) which simply assumes an
exponential correlation function proportional to exp(−t/τ )where τ is the mean time for one of
a pair of interacting spins to jump. The corresponding spectral density function is a Lorentzian
function of frequency. It is also assumed that τ depends on temperature T according to the
Arrhenius form τ = τ0 exp(E/kT ) where E is the activation energy for the diffusive jump of
a spin. This model has been widely used in interpreting relaxation data on ordered systems
because of its simplicity.

In disordered systems the structural disorder will produce a distribution of activation
energies. The common extension of the BPP model for such cases has been to use a weighted
average of the ordered BPP model with the weighting for each activation energy given by the
appropriate energy distribution function (see, for example, Barnes 1997). There is, however,
little justification for this procedure.

A physical basis for the assumption of an exponential correlation function is that
exp(−t/τ ) is the probability of no jump of either of a pair of spins in a time t . The BPP
model then describes a situation for which the correlation between a pair of spins is completely
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destroyed when either of the spins jumps. This model has been extended to disordered systems
(Cameron and Sholl (1999a), to be referred to as CS) for independent site-energy distributions
and barrier-energy distributions. The energy of a site determines the occupation probability of
the site according to the Fermi–Dirac distribution, and the height of the barrier energy between
two neighbouring sites determines the rate of jumps between the sites. Some calculations by
CS for the site-energy model and for the barrier-energy model showed that the results could be
quite different to the common model of simply averaging the BPP model over a distribution
of energies.

The purpose of this paper is to develop this CS model further. Any practical disordered
system is likely to have both site-energy and barrier-energy disorder. It is therefore desirable
that calculations can be performed for both such disorders occurring together. The computation
of spectral density functions and relaxation rates in this case requires the numerical evaluation
of triple integrals which can be extremely slowly convergent for low temperatures.

The basic theory of the correlation functions is described in section 2 and some numerical
results are presented for both the present model (CS model) and the commonly used extension
of the BPP model to disordered systems (BPP model) for the case of Gaussian energy
distributions. An efficient method of calculating the spectral density functions and relaxation
rates is described in section 3. Some results for relaxation rates for typical values of parameters
are then shown and discussed.

2. Correlation functions

The model to be considered is a set of sites in a disordered structure for which the site-energy
distribution is Ns(E) and for which there is an energy barrier between adjacent sites with a
distribution Nb(E1). A fraction c of the available sites are filled with atoms which diffuse by
jumps from a site with energy E to a neighbouring site across a barrier with energy E1 with a
jump rate  given by

(E,E1) = 0e−(E1−E)β (1)

where β = 1/(kT ). The CS correlation function for magnetic dipolar interactions between
spins diffusing on these sites is

G(t) = S

c

{∫
p(E)Ns(E) dE

[∫
Nb(E1)e

−(1−c)(E,E1)t dE1

]Z}2

(2)

where Z is the average number of nearest-neighbour jumps from a site, S is the lattice
summation S = ∑

α r
−6
α and p(E) is the Fermi–Dirac function:

p(E) = 1

e(E−µ)β + 1
. (3)

The chemical potential µ is related to c by

c =
∫ ∞

−∞
p(E)Ns(E) dE. (4)

The corresponding correlation function for the BPP model averaged over a distribution N(E)

of activation energies is

GBPP (t) = Sc

∫
N(E)e−2(1−c)Z(E)t dE (5)

where (E) = 0 exp(−Eβ). A similar type of analysis has also been applied to the form of
the average jump rate for disordered systems (Cameron and Sholl 1999b).
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The assumption in the form of GBPP (t) is that each site has an equal probability of
occupation and that the probability of no jump away from a site in a time t is determined
by the sum of the jump rates in each direction. The CS correlation function includes the
effect of occupation probabilities of sites according to the Fermi–Dirac function, and that the
probability of no jump of a spin away from a site in any direction in a time t is given by the
product of the probabilities of no jump of a spin in each direction. The difference between
the two assumptions regarding jumps away from a site can be understood by an example in
which the rate of jumps away from a site is much faster in one direction than the others. The
rate of escape of a spin from the site will be determined largely by this fast jump rate rather
than the average jump rate. This effect is described correctly in the CS correlation function.
The CS and BPP correlation functions are identical in an ordered system where the occupation
probabilities of sites are the same for all sites and the jump rate is the same for all directions.

It is useful to write the above expressions in the following forms for computational
purposes. It will be assumed that the energy distributions are Gaussians with mean energiesEs ,
Eb and standard deviations σs , σb for the site- and barrier-energy distributions respectively. A
similar procedure could be followed for any other functional form of the energy distributions.
The following changes of variable are made:

σ =
√

2σsβ σ1 =
√

2σbβ

u = (E − Es)/(
√

2σs) v = (E1 − Eb)/(
√

2σb)

µ = (µ − Es)/(
√

2σs) t ′ = t

where

 = 0(1 − c) exp [−(Eb − Es)β].

Equations (2) and (4) then become

G(t ′) = S

c

{
1√
π

∫ ∞

−∞

e−u2

e(u−µ)σ + 1
FZ(t ′eσu) du

}2

(6)

c = 1√
π

∫ ∞

−∞

e−u2

e(u−µ)σ + 1
du. (7)

The function F(t ′) is

F(t ′) = 1√
π

∫ ∞

−∞
exp (−v2 − t ′e−σ1v) dv (8)

which only depends on the parameter σ1. The correlation function G(t ′) depends on the
parameters c, σ and σ1. The scaled time t ′ corresponds to t in units of the reciprocal of the
jump rate  for a particular direction for energies which are the means of the energy distrib-
utions. The functions F(t ′), G(t ′) are independent of the mean energies Es and Eb. The
difference between these mean energies is only relevant in the scaling of time t .

If only the barrier-energy distribution occurs (constant site energies), the correlation
function G(t ′) = ScF 2Z(t ′). The BPP correlation function (5) expressed in this notation
is GBPP (t

′) = ScF(2Zt ′). For an ordered system, σ1 = 0 and F(t ′) = e−t ′ .
A comparison of F 2Z(t ′), F (2Zt ′) and exp(−2Zt ′) is shown in figure 1 for Z = 4 and

σ1 = 0, 1.5 and 3.0. Increasing σ1 corresponds to increasing σs and/or decreasing temperature.
For non-zero σ1 both F 2Z(t ′) and F(2Zt ′) initially decrease faster than the exponential for
σ1 = 0 and then decrease slower than it at longer times. The initial rapid decay corresponds to
jumps from those sites with low activation energies. The function F 2Z(t ′), corresponding to
the CS model, decreases faster than F(2Zt ′), corresponding to the BPP model, which reflects
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Figure 1. A comparison of F 8(t ′) (CS model, solid curves), F(8t ′) (BPP model, short-dashed
curves) and exp(−8t ′) (long-dashed line). The curves with the smallest difference from the
exponential for each model are for σ1 = 1.5 and the other curves are for σ1 = 3.0.

the possibility of a spin being able to jump along the fastest jump path in the CS model, rather
than jumping according to the average jump rate as in the BPP model.

The form of the correlation function G(t ′)/(Sc) is shown in figure 2 for Z = 4 and some
values of σ , σ1 and c. The two upper curves for large t ′ in figure 2 are for σ and σ1 equal to 3 and

Figure 2. The correlation function G(t ′)/(Sc) (solid curves). From left to right, the curves are for:
σ = 3.0, σ1 = 1.5, c = 0.1; σ = 1.5, σ1 = 3.0, c = 0.1; σ = 1.5, σ1 = 3.0, c = 0.9; σ = 3.0,
σ1 = 1.5, c = 0.9. The dashed curve is exp(−8t ′).
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1.5, and the two lower curves are for 1.5 and 3 respectively. For each pair of curves the upper
curve is for c = 0.1 and the lower curve for c = 0.9. The differences between these pairs of
curves shows that disorder in the site energies has a different effect on the correlation functions
to disorder in the barrier energies. The differences between the curves of each pair shows that
the correlation functions depend significantly on the spin concentration c due to the effect of
the Fermi–Dirac function. The BPP correlation function (5) does not show this c dependence,
nor does it distinguish between disorder in the site- and barrier-energy distributions. All of the
correlation functions for disordered systems in figure 2 show similar qualitative behaviour to
the curves for the BPP model in figure 1 but the quantitative forms are different and depend
on c. The results for the case of only a barrier-energy distribution (solid curves in figure 1)
are quite different and show that the BPP model is not consistent with a distribution of barrier
energies.

3. Relaxation rates

The expressions for the spin–lattice relaxation rates R1 (laboratory frame) and R1ρ (rotating
frame) for magnetic dipolar interactions between like spins can be expressed as

R1 = M2

3Sc
[J (ω0) + 4J (2ω0)] (9)

R1ρ = M2

6Sc
[3J (2ω1) + 5J (ω0) + 2J (2ω0)] (10)

where the second moment M2 and the spectral density function J (ω) are

M2 = 3

5
γ 4h̄2I (I + 1)Sc (11)

J (ω) = 2
∫ ∞

0
G(t) cos(ωt) dt = 2



∫ ∞

0
G(t ′) cos

(
ω


t ′
)

dt ′. (12)

In these expressions γ is the gyromagnetic ratio and I the spin quantum number of the diffusing
spins and ω0, ω1 are the resonant frequencies of the spins in the static and rotating fields,
respectively.

The computation of the relaxation rates for a particular set of parameters σs , σb, Eb −Es

that specify the energy disorder, and for a specific temperature T , involves the numerical
evaluation of a triple integral arising from the Fourier transform (12) and the double integral
in the expressions (6) and (7) for G(t ′). A direct numerical evaluation of the triple integral is
extremely slow for low temperatures. An efficient computational method is needed for fitting
experimental data since the calculations need to be performed for many sets of parameters in
the fitting procedure. The following method is a rapid practicable scheme for all temperatures.
The function F(t ′) defined by equation (8) is first computed for a set of values of t ′ defined
by t ′ = exp[(σ1 + 0.8)ti] with the values of ti equally spaced. The values of FZ(ti) are stored
in an array and required values of FZ(t ′eσu) needed in computing G(t ′) are computed from
the stored array by interpolation. The 0.8 in the above exponential is an empirical value. The
Fourier transform (12) is calculated by numerical integration over successive periods of the
cosine until desired accuracy is reached. The infinite integrals in equations (6) and (8) are
evaluated over a range of sufficient numbers of standard deviations to ensure the required
accuracy.

Some examples of calculated relaxation rates, in units of M2, for typical values of
parameters are shown in figures 3 and 4 for the CS and BPP models. The calculations
are all for a resonant frequency of 30 MHz and ω1 = 0.002ω0. All of the results for the
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Figure 3. Calculated relaxation rates R1 (curves with lower maxima) and R1ρ (curves with upper
maxima) for a resonant frequency of 30 MHz and ω1 = 0.002ω0 and for the CS model (solid
curves) and the BPP model (dashed curves). The parameters for the CS rates are σs = 0.03 eV,
σb = 0.06 eV, Eb − Es = 0.5 eV, 0 = 3.00 × 1013/(1 − c) Hz and c = 0.1, 0.5 and 0.9
(for curves from right to left). The parameters for the BPP rates are σ = 0.06 eV, E = 0.5 eV,
0 = 1.0 × 1014/(1 − c) Hz and M2(BPP) = 1.21M2.

Figure 4. Calculated relaxation rates as for figure 3. The parameters for the CS model (solid
curves) are σs = 0.06 eV, σb = 0.03 eV, Eb − Es = 0.5 eV, 0 = 3.0 × 1013/(1 − c) Hz and
c = 0.1, 0.5 and 0.9 (for curves left to right). The parameters for the BPP model (short-dashed
curves) are σ = 0.05 eV, 0 = 6.3 × 1013/(1 − c) Hz and M2(BPP) = 1.11M2.
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CS model have Eb − Es = 0.5 eV and all of the results for the BPP model have a mean
distribution energy E = 0.5 eV. The value of the prefactor frequency for the CS calculations
is 0 = 3.0/(1 − c) × 1013 Hz. The CS results in figure 3 are for σs = 0.03 eV, σb = 0.06
eV and c = 0.1, 0.5 and 0.9. The values of the BPP parameters σ , 0 and M2 have been
chosen to give a reasonable fit to parts of the CS results. The value of M2 was adjusted to fit
the maximum CS rates, σ was chosen to give comparable broadening of the curves and 0 was
chosen to give a reasonable fit to the position of the CSR1 maximum for c = 0.9. The factor of
1/(1 − c) included in the choice of 0 above corresponds to eliminating simple site-blocking
effects which would shift the curves along the 1000/T axis for different c. For the BPP model
this is the only c-dependent effect and the BPP results in figure 3 are therefore independent of
c. For the CS model there are additional spin concentration effects arising from the effects of
the Fermi–Dirac distribution.

The parameters for the BPP curves in figure 3 are σ = 0.05 eV, 0 = 1.0 × 1014/(1 − c)

Hz and M2(BPP)= 1.21M2. The BPP fit to the CS results is quite good for the R1 results for
c = 0.9, or for the high-temperature R1ρ results for c = 0.1, or for the low-temperature region
of the R1ρ curves for c = 0.5. It is not, however, possible to choose parameters for the BPP
model that give a good fit to both R1 and R1ρ curves over the entire temperature range for any
of the values of c. The CS model therefore gives different types of functions to the BPP model
in general.

The relaxation rates for the CS model shown in figure 4 are for the same parameters
to those in figure 3, but with the standard deviations of the energy distributions reversed to
σs = 0.06 eV and σb = 0.03 eV. It can be seen by comparing the results for c = 0.1 and 0.9
in figures 3 and 4 that interchanging the site- and barrier-energy distributions produces quite
different relaxation results. The BPP model does not distinguish between these distributions.
The fit of the BPP results to the CS curves is for σ = 0.05 eV, 0 = 6.3 × 1013/(1 − c) Hz
and M2(BPP ) = 1.11M2. The fit is reasonable over the entire temperature range for R1 and
R1ρ with c = 0.9.

The value of E = 0.5 eV for the BPP results in figures 3 and 4 is the same as that for
Eb − Es for the CS results. The BPP fit value of σ = 0.05 eV in both figures is close to the
larger of σs and σb in each case. The BPP values of 0 are a factor of two or three different
from the CS values and the fitted BPP values of M2 are larger. This result that the BPP model
gives lower maxima than the CS model (for the same M2) is consistent with the results found
by CS for separate site- and barrier-energy models.

The examples shown in figures 3 and 4 suggest that the fitting of experimental data using
the CS model will lead to fitting parameters that are similar in magnitude to those that would
be obtained from a fit using the BPP model. However, the CS model can provide information
on both barrier- and site-energy distributions, unlike the BPP model which can only provide
information on a single-energy distribution for which a physical interpretation is not clear.

4. Discussion and conclusions

The extension of the BPP model to diffusion in disordered systems described here has a more
rigorous basis than the commonly used phenomenological extension that averages relaxation
rates over a distribution of jump rate energies. This CS model also allows fitting of experimental
data to distinguish between site- and barrier-energy distributions. The efficient computational
procedure described provides a practical approach for analysing the data. The theory could
easily be extended to energy distribution functions other than Gaussians and to relaxation due
to unlike spins, which involves a different combination of similar spectral density functions.

The CS model, however, is based on the assumption that the magnetic dipolar correlation
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between a pair of diffusing spins is destroyed when either of the pair of spins undergoes a
jump. This approximation ignores the effect of return jumps of a spin and correlated diffusion
of spins following the first jump. In ordered systems the effect of this approximation can
be assessed by comparing the results from the BPP model to the exact results for particular
diffusion models. The use of the BPP model in this case can lead to values of the prefactor 0

that are in error by as much as 60%, the approach of the relaxation rates to asymptotic limits
is described incorrectly and small deviations from Arrhenius behaviour could be incorrectly
inferred (Sholl 1993). Nevertheless, the use of the BPP model in analysing relaxation data on
ordered systems does not in general produce major errors in deducing activation energies and
can give a moderately good fit to experimental data.

It is highly desirable that a similar comparison of the results of the present CS extension
to the BPP model is made with the results of more rigorous calculations of spectral density
functions and relaxation rates for disordered systems. Such methods could include Monte
Carlo simulations (Hua et al 1995) or a rigorous analysis of small finite systems (Girard and
Sholl 1996).
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